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1. Introduction 

The first computers were designed to satisfy the computational needs of scientists and 

engineers. Once the community began operating these computers, they realized that problems 

existed whose size exceeded the capabilities of these machines -- maybe an indication that human 

vision outperforms human engineering. As a direct result of the existing need for bigger and fas- 

ter machines the first supercomputers were built -- those being nothing more than the most 

powerful computer at any point in time. 

Improvement in hardware performance of computers and supercomputers has been 

dramatic4. First came the change from bulky and sensitive vacuum tubes to the small and reli- 

able semiconductor transistor. This was followed by a twenty year period of packing hundreds, 

to hundreds of thousands of transistors on a silicon chip. These developments were the major fac- 

tor behind improved computational performance, and the basic computer logic design did not 

change much - if it changed at all - from the original von Neumann prototype. 

The improved performance of the silicon chip is, however, reaching its (quantum- 

mechanical) limits. In addition, with operating gate speeds of the order of few nanoseconds, a 

limit is imposed by the distance a signal can propagate: at 9.5 nsec for the CRAY X-MY the limit 

is roughly approximate to the linear dimensions of the computer. Thus, greater computer perfor- 

mance can be achieved only through radical changes in computer architecture; today’s supercom- 

puters are shifting from the uni-processor design to architectures with many processors that per- 
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form independent operations concurrently. 

This trend in changing computer architecture presents the algorithmic designer with new 

challenges. In the context of mathematical programming algorithms, there have been a number of 

theoretical studies in unconstrained optimization within a parallel environment - several of these 

occuring before parallel computers became widely available. See, for example, Dixonll, 

L o ~ t s m a ~ ~ ,  Schnabel4I and their references. Parallel constrained optimization is practically unex- 

plored; there have been few experiences with large scale optimization on parallel computers (for 

an exception see L a ~ d o n ~ ~  ). This paper examines some of the general aspects of vector comput- 

ing with emphasis on its impact on the field of nonlinear network programming. 

Network modeling is a fertile area of mathematical programming. A wide range of real 

world problems can be formulated as nonlinear networks models. Such problems include stochas- 

tic networks6, hydroelectric power systems control39, steady-state equilibriuml63 7, balancing of 

Social Accounting Matrices (SAh4)14, and stock portfolio selection problems33. Lasdon and 

Warren2s review some of these areas and provide a bibliography. In the past, progressively larger 

problems were solved by capitalizing on the underlying structure of the network prob- 

l e m ~ ~ * ~ ~ *  lo, l9. Nevertheless applications still exist - like the U.S. air-traffic control - 

that result in problems whose size exceed the capabilities of conventional computer systems. 

Supercomputers can solve a whole new range of problems that are considered by today’s stan- 

dards to be ultra-large. 

Several questions arise with respect to the use of supercomputers. How do we specialize 

different algorithms to take advantage of the architecture of vector computers, and how do these 

algorithms compare on such machines? Do our experiences with nonlinear network algorithms on 

sequential machines still hold true in a vector environment? Does the relative advantage of net- 

work algorithms over general purpose codes carry over onto vector machines or not? These ques- 

tions will be addressed in this paper. 

The remaining of the paper is organized as follows: Section 2 provides an overview of 

current trends in computer design, examining those features of the supercomputer architecture 
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that are important to the applications programmer. Section 3 describes a general framework for 

the vectorization of optimization software; these guidelines are applied in vectorizing two non- 

linear network codes as described in Section 4. Conclusions and computational comparisons with 

a general purpose code (MINOS) in a vector environment (CRAY X-MP/24 computer) are the 

subject of Section 5,  together with comparative testing among different computer systems. The 

vectonzation framework, the streamlining of the network algorithms, and the computational 

experiments on the CRAY X-MP/24 are the main contributions of this study. 
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2. Computer Architecture 

Consider a network problem in three spatial coordinates over multiple time periods ( e g  the 

U.S. air-traffic control ). To achieve an increase in resolution by an order of magnitude 

would require an increase in speed by a factor of 10**4. The trend in cycle times for computer 

systems over the last 20 years (Figure l4 ) suggests that the performance of conventional 

machines will improve by at most a factor of ten over the next decade. At the same time the per- 

formance of parallel computers is expected to improve by a factor of 100-20044. 
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This performance will be made possible only through the use of innovative computer architec- 

tures. The specifics of the computer design become therefore of primary importance for those 

users who want to exploit the full potential of supercomputers. 

In this section we discuss several issues in super-computer design. For more details refer to 

the papers assembled by Kowalik26, the work by Warlton4, Neves3* or Hockney and Jeeshope20 

and the recently published tutorial on "Supercomputers: Design and Applications"22. We 

describe features of the CRAY X-MP/24 that are important from a programmer's point of view. 

The choice of the CFUY X-h4P as a reference machine is based on the following considerations: 

(I) CRAY computers achieve a reasonable balance between general purpose, uniprocessor (but 

slow) systems, and fast, parallel (but special purpose) machines. They have been shown to 

achieve relatively high performance on a wide variety of benchmark problems40. 

(11) CRAY computers are the most accessible to the scientific and especially the academic com- 

munity: 75% of the world's supercomputers are CRAY systems, four out of the six institu- 

tions providing supercomputing services to the Academic community in the U.S. have 

CRAY computers, and two out of the four planned Supercomputer Centers will be equipped 

with CRAYs2. Also twenty-six out of the forty supercomputers installed in six western 

European countries (as of September 1984) were CRAY machines15. 

Although use of the CRAY seemed more appropriate at this point, it should be pointed out 

that several other parallel systems are commercially available. It is by no means clear which sys- 

tem is more suitable for a particular application. New designs are constantly appearing either as 

research projects or on a commercial basis. 

2.1. A Trend Analysis 

It is beyond the scope of our study to provide a comprehensive analysis of the trends in 

computer architecture. This is in fact one of the complications arising from parallel computing: 

there exists a wide variety of architectures each one with its own distinct features that present the 

programmer with different advantages or disadvantages. A broad analysis indicates that the situs- 
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tion in designing parallel computers is indeed chaotic. 

Parallel computing can be visualized as a domain with two dimensions5 (see Figure 2). On 

the one side we have multiple processors operating independently on the same problem, possibly 

executing different jobs associated with the same problem (multi-programming), executing dif- 

ferent tasks of the same algorithm (mulrirasking) or executing different portions of the same task 

(micrcztasking); this is high level parallelism. The second degree of parallelism lies at the level of 

vector/matrix operations of an algorithm. This is low level parallelism, conveniently called vec- 

torizarion. 
M U L  TI TA SKIN G 

I 

HIGHER level  para l l e l i sm  
i n d e p e n d e n t  ALGORITHMS 
JOB,~PROGRAM orient a t i o n  
MULTI-JOB per formance  

LOWER level p a r a l l e l i s m  
independen t  OPERATIONS 
STA TEMENT or i en ta t ion  
SINGLE - JOB p e r f o r m a n c e  

Y 

SCALAR VECTORIZA TION 

Figure 2: The Two Dimensions of Parallelism 

The first dimension of parallelism has been realized in a number of existing computer sys- 

tems, that in Flynn’s taxonomy l7 may be classified as Mulriple Znsrrucrions Multiple Dura 

(MIMD) machines. (Examples: iPSC by INTEL42, HEP by DENELCOR43, NYU Ultracom- 

pute? 1. 

A further classification of MIMD systems is based on the number of processors available on 

the system: 
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Small scale distributed systems < 16 processors 

Medium scale distributed systems < 128 processors 

Large scale distributed systems <lo24 processors 

Massively distributed systems >lo24 processors 

Lastly, multiple processors may be tightly coupled communicating with each other through 

shared registers, shared memory, or by exchanging messages. Or they may be loosely coupled 

through, for example, a local area network incurring high communication costs. See the paper by 

Cotton8 for a survey of networking technologies for distributed systems. 

The second category of parallel machines (vector processors) fall into Flynn’s Single 

Instruction Multiple Datu (SIMD) category. (Examples: CRAY X-h4P or CRAY-2 by CRAY 

 research'^^', CYBER 205 or CYBERPLUS by Control Data25, FACOM WlOO or VP200 by 

F u j i t ~ u ~ ~  ). These machines are characterized by parallelism at the vector/matrix operations 

level. In general, they have a number of dedicated functional units (for example, one for addition 

and one for multiplication). High performance is achieved by executing, in a pipeline fashion, 

operations on long vectors or matrices. Vectors may be fetched directly from memory (e.g. 

CYBER 205)’ or may be loaded through fixed length registers (CRAY systems), or through 

reconfigurable registers (FACOM). Some machines, like the CRAY, may address vectors in non- 

contiguous storage, while on other machines, like the CYBER 205, this is not possible. As a 

further complication, vector computers are designed with a number of processors that may 

operate independently.(For example CRAY X-MP comes in versions with two or four proces- 

sors). 

This multitude of computer designs provides the programmer with new challenges in the 

design of optimization algorithms. It is unlikely that computer architecture will stabilize to a par- 

ticular configuration in the forseeable future, and a universal solution to the problem of parallel 

software development is unlikely to be found. Lootsma31 identifies some of the issues arising 

from the evaluation of algorithms in parallel environment, and Mulvey and Zenios 36 address the 

problem of managing large software systems in the face of rapidly changing architectures. 



- 8 -  

We describe in Section 3 a general framework for streamlining optimization algorithms for 

a vector environment. Our attention is limited to a well specified architecture - that of a CRAY 

X-MP computer - which is now briefly examined. (Our framework, however, may be extended to 

the case of other machines with similar organization.) 

2.2. CRAY X-MP Architecture for Application Programmers 

The CRAY X-h4P is a vector, register-to-register computer. This means that vectors are 

loaded from memory into registers before being processed; results are stored in registers before 

returning to memory. 

Figure 3 is a schematic representation of the CPU architecture of a CRAY X-MP; for a 

more detailed description refer to5, 279 l. The features of the architecture that are of interest to the 

mathematical programmer are summarized below : 

Dedicated functional units for floating point vector ADDITION, MULTIPLICATION, and 

RECIPROCAL APPROXIMATION. 

Dedicated functional units for integer vector ADDITION, LOGICAL, and SHIFT opera- 

tions. 

Dedicated functional units for integer scalar ADDITION, LOGICAL, and SHIFT opera- 

tions. 

Vector functional units operate in a pipeline fashion: the first result appears after a start-up 

period, and remaining results appear with the rate of one every clock period. 

Eight vector and eight scalar registers. Vector registers are 64 real words long each. 

Four parallel paths to/from memory: two for vector LOAD, one for vector STORE, and one 

for independent VO. 

Four million words of memory, (32 Mbytes), organized in 32 interleaved memory banks. 

Large Solid-state Storage Device (SSD) with size 32 million word (128 Mbytes) and high 

block transfer rate. (Data transfer rate - 250 times faster than disk at 1000Mbytes/sec ; SSD 

access times - 100 times faster than disk at 0.5ms) 
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We proceed to describe how these special features are utilized efficiently by a Fortran pro- 

gram. The CRAY Fortran Compiler (CFT) will generate machine instructions for the usage of the 

vector functional units and registers. The compiler, however, will not generate vector code in 

many instances. It is therefore the programmer’s responsibility to present the compiler with con- 

structs that will vectorize. (This view is reinforced by the computational results of Section 4 and 

in particular Table 2). 

2.2.1. Vectorization of DO Loops 

The primary vehicle of vectorization is the iterative procedure (i.e. inner DO loops). If a 

loop is executed N times, where N = 64*K + r , the compiler will generate insmctions for a 

(short) loop of length r, and then will process the additional K segments - recall that 64 is the 

size, in words, of the vector registers. This strategy is possible only when operations are identical 

- i.e., no branching statements are encountered during execution of the loop. Also data in the pro- 

cessed vectors have to be independent - i.e., no vector element should depend on the value of 

some other elements computed during execution of the loop. 

The vectors are processed by the independent functional units in a pipeline fashion: the first 

result will appear from the functional unit after a start-up period, conveniently called the f u n i t .  

Subsequent results appear at the rate of one every cycle. In this environment we would rather pro- 

cess large vectors so that the overhead of f-units is diminished. 

2.2.2. Functional Unit Parallelism 

The presence of multiple functional units may be exploited in two ways: 

Functional Unit Overlap: functional units may operate independently of each other. For 

example, while one unit is adding two vectors the multiplication unit may process two dif- 

ferent vectors. The existence of multiple paths to/from memory make it possible to load the 

vectors for the multiplication while storing the results of addition. 

Functional Unit Chaining: the results of one functional unit may be fed directly into a 

second unit. See, for example, Figure 4 which describes chaining of multiplication with 
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addition during execution of the (a .X + 7)  operation, called SAXPY using the BLAS nota- 

tion30 (scalar a times vector E plus vector 7). 

X 

Y v3 

7 > 
d ( i - 4 )  + Y(i- 4 )  d ( i - S ) +  Y(a-5) 

Figure 4: Functional Unit Chaining in the SAXPY Operation 

2.2.3. Sparse Vector Operations 

In most large scale optimization systems some kind of sparsity is present, and is exploited 

by the software. This in general requires at least one level of indirect addressing. Indirect and 

nonlinear addressing will inhibit vectorization. Hence we use a three step procedure for sparse 

operations: 

(1) GATHER the non-zero components of the sparse vector, according to the indirect address- 

ing list. 

(2) Process the gathered data in vector/pipeline mode 
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(3) SCATTER the results using the indirect addressing list, to their corresponding locations. 

This technique transforms a non-vectorizable code into a part that will vectorize (2), and two 

parts (1,3) for which most supercomputers have readily available routines coded efficiently at the 

assembly language level. (GATHER and SCATTER are implemented at the hardware level on 

the CRAY X-Mp and are basic instructions for the CYBER 205). See Figure 5 for an example; 

refer to the paper by Dembart9 for an extensive discussion of sparse loop operations that may be 

vectorized using SCATTEWGATHER operations. Operations (l), (2) and (3) exploit functional 

unit parallelism (chaining and overlap). The efficiency with which they are performed counterbal- 

ances the involved overhead, especially in processing long vectors. 

- 
A 

- 
Y 

GATHER the non-zero elements of 
vector A ( . )  into vector 
using index array IND(. 

SCATTER the elements of vector 
Y(.) into the sparse vector A ( . )  
using index array IND(.) 

DO for all I = 1 , N 

ENDDO 
Y ( I )  = A ( IND(I) ) 

DO for all I = 1 , N 

ENDDO 
A ( IND(I) ) = Y ( I )  

Figure 5: The SCATTEWGATHER Operations for Sparse Vectors 
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2.2.4. Memory Access 

The CRAY X-MP/24 has four million words of real memory, organized in 32 interleaved 

memory banks. The reason why memory is interleaved in banks is (fortunately) not of interest to 

the applications programmer - refer to1. The fact however that exactly 32 banks are available is 

of importance: it is possible to issue instructions to transfer words into/out of memory at the rate 

of one word per clock period (cp). However there is a period - called bunk cycle - during which 

the load/store is completed, and during this period the memory bank involved is busy. The 

memory bank cycle for the X-MP is 4cp, and a memory bunk conflict will occur if two load/store 

instructions refer to the same bank within 4cp. How can this happen? Since arrays in Fortran are 

stored as a long contiguous vector, over 32 banks, every 33rd element of a vector will be in the 

same bank. Hence the program should avoid referencing a vector by a stride of 32, and avoid 

simultaneous operations on vectors whose location in memory is offset by 32 words. Performance 

will degrade by a factor of four in the above mentioned cases. Degredation by a factor of two 

will occur in addressing elements of vectors offset by 16 words, since a memory bank conflict 

will occur every second instruction. 
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3. A Vectorization Framework 

In streamlining a software system for a parallel environment we consider vectorization at 

three levels: 

(1) Local Software vectorization 

(2) Global Software Vectorization 

(3) G l o b a l b a l  algorithm vectorization. 

At the first level, the program is examined at the subroutine level, and redesigned to take 

advantage of the computer features. At the second level the whole implementation of the algo- 

rithm is examined; data structure and application choices are redesigned to take advantage of the 

machine. At the third level the choice and the design of the mathematical algorithm is recon- 

sidered, in the light of machine architecture. The later level of vectorization is a challenging area 

of research which is practically unexplored: current algorithms for nonlinear network program- 

ming are the result of years of research and experience from different researchers and we are res- 

tricted, at least temporarily, to consider vectorization of existing algorithms. Machine architec- 

ture, however, should be considered as an equally important factor with the problem 

structure/characteristics in the design of new algorithms. This philosophy is reflected in the inno- 

vative algorithm for linear programming by KarmarkaG4. The fact that the algorithm is suited 

for parallel processing is often cited as one of its advantages over the simplex method. 

Local software vectorization is the first issue to be considered. While perpetuating 

inefficiencies of past designs, code performance may improve by as much as an order of magni- 

tude and is in general easier to pursue. Global software vectorization should be considered when 

it is recognized that current design (data structure, etc.) totally inhibit vectorization at the local 

level. It is in general more expensive in terms of computational and human resources, but 

together with local vectorization it may result in substantial improvement in the performance of 

the algorithm. 

We discuss below the steps that ought to be taken in vectorizing optimization software. 
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STEP-1: Use a time-analysis of the algorithm to determine the computationally intensive parts 

of the program. Over 80% of the time of most application programs is spent in less 

than 20% of the code. Vectorization efforts should be concentrated on this part of the 

code. 

Use, where possible, computational kernels that are currently available on most vector 

computers, and are fine-tuned for the particular architecture. 

Rearrange/modify the order of operations to make possible the use of computational 

kernels. 

Rearrange the order of nested DO loops. Since only inner DO loops will vectorize, 

make those loops over the biggest index. 

Operate on the biggest dimension of two dimensional arrays. 

Unroll DO loops. This technique was originally proposed by Dongarra and Hind12; 

instead of executing a loop over 1=1 to N with stride 1, use stride K and write explicit 

code to account for the calculations over I,I+l, ... I+K-1. This technique eliminates the 

overhead of checking for termination conditions (I> N) and also enforces chaining 

and/or functional unit overlap. The depth at which unrolling is performed, Le., the 

value of K, depends on the particular operations to be executed. 

Within DO loops avoid statements that inhibit vectorization: 

STEP-2: 

STEP-3: 

STEP-4: 

STEP-5: 

STEP-6: 

STEP-7: 

- IF statements 

- GOT0 statements 

- CALL statements 

- Nonlinear vector references 

- Vector dependencies 

STEP-8: If Steps 2 to 7 were successful some other part of the algorithm is now the most com- 

putationally intensive, and has to be reexamined; go to STEP-1 and repeat. If the 

most computationally intensive part of the algorithm is vectorized, no further 
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improvement can be achieved and the process may terminate. If no substantial 

improvement in the performance of the algorithm was achieved in executing steps 1 to 

8 proceed to STEP-9. 

STEP-9: Reconsider global aspects of the algorithm that may inhibit vectorization - typically 

the data structure. Are there any changes possible that will make Steps 1 through 8 

effective, and if yes do the anticipated improvements justify the effort? If the answer 

is yes go to STEP-1 and repeat. Otherwise we are dealing with an inherently scalar 

algorithm, and the choice of algorithm or problem formulation will have to be recon- 

sidered. 

Conclusion : Vectorization of a program is an iterative process involving both knowledge of the 

algorithm and understanding of the architectural features of the computer. Although attempts are 

being made to design efficient vectorizing compilers, and array/vector extensions to the ANSI 

Fortran are discussed (See Chapter 4 of "Supercomputers and Applications"22 ), the burden is 

currently on the applications programmer for the efficient vectorization of his software. 

In the next section we use this framework in the context of two nonlinear network codes: in 

the one case with very encouraging results in terms of improved performance, and in the other 

case with less desirable, yet illuminating conclusions. 
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4. Case Studies in Nonlinear Network Programming Vectorization 

In this section we describe how the vectorization framework developed earlier was applied 

in the context of two codes for nonlinear network programming. A nonlinear generalized net- 

work problem is defined in the form : 

[NLGN] Minimize F(F) 
Subject to : 

- 
A * x  = b 

1 l X l U  
- 

where : 

F(X) : convex objective function 

x 

A 

b 

1 lU : vectors of lowerhpper bounds 

NA : number of arcs in the network 

NN : number of nodes in the network 

- 
: vector of decision variables 

: generalized network constraint matrix with two non-zero entries in every column 

: vector of supplies and demands 
- 

- 

The first code (NLPNETG) is based on the primal truncated Newton algorithm, imple- 

mented using an active set strategy whereby the constrained matrix is partitioned into a basic, 

superbasic and non-basic part: A = [ B  I S IN 3. For a description of the underlying algorithm and 

discussion of implementation issues refer to Ahlfeld et ai3. The second code (GNSD) is based on 

the simplicial decomposition algorithm of Hohenbalken21, with inexact solutions to the master 

problem. Refer to Mulvey et al. 34 for a description of the algorithm and its implementation. The 

reader who is unfamiliar with developments in computational nonlinear programming will find 

the book by Gill et al. l8 useful. 

The computational testing was camed out on a CRAY X-MP/24 available at Boeing Com- 

puter Services (BCS). This CRAY model has two independent CPUs and comes with 4MWords 

of real memory - only one CPU was used by our programs due to operating restrictions by BCS. 

The CRAY FORTRAN compiler CFl"1.13 was used in all cases. The test problems were 
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54 
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4 

Condition No. I Objective I I.. Norm 

Table 1 : Test Problems 

4.1. Truncated Newton Algorithm 

Once the software system NLPNETG was installed on the CRAY it became evident that the 

vectorizing compiler had only marginal effect on performance (average improvment in solution 

time - 14%) - refer to the first two columns of Table 2. This behavior was anticipated, since 

NLPNETG makes extensive use of sparse matrix handling techniques, and employs data structure 

that are inherently scalar. A timing analysis of the program for a typical test problem (l’l”660) 

reveals that the following parts of the program are the most computationally demanding: 

1. Conjugate Gradient routines (CG) 

2. FunctiodGradientfHessian evaluation (CALFGH) 

3. Active set generation routine (PVCOL) 

4. Basis handling routines (REVMAX) 

5. Active set storage routine (STORE) 



Problem 

PTN150 
PTN660 
SMBANK 
BIGBANK 
STICK4 
GROUP 1 ac 
GROUP 1 ae 

Av. ratio 
* 

0.86 

NLPNEl 

2.131 
0.22 

~- 

Without vectorization 
0.328 
2.435 
0.358 

244.107 

18.668 
* 
* 
* 
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Solution times (sec) 
Compiler vectorization I User vectorization 

0.317 I 0.165 
2.316 
0.327 

225.900 

17.215 
* 
* 

1.402 
0.177 

58.896 
2.925 
4.983 

49.454 

problem not solved with this option 

Table 2 : Vectorhation of NLPNETG on the CRAY X-MP/24 

6. General purpose sorting routine (SORT) 

Point A of Figure 6 indicates the percentage of CPU time spent in every one of these routines, 

and the total time for solving this problem. The conjugate gradient (CG) routines are the most 

computationally demanding for this code. 

The CG routines implement the linear conjugate gradient algorithm for solving Newton’s 

equations for the search direction on the active set: 

where : 

p7r , descent direction on the active set 

= VF (2) , gradient vector (NA -long ) 

H = V2F (5) , Hessian matrix (NA x NA ) 

B , square nonsingular basis matrix (NN x N N )  

S , rectangular matrix of active set columns (NN x NS ) 

NS is the number of superbasic variables in the current subspace 

For a detailed description of the conjugate gradient algorithm refer to Gill et all8. The advantage 

of this approach for large scale computing, however, is that it does not require explicit 
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computation of the reduced Hessian (Z '*H . Z ) ;  instead it forms a series of products of the form 

2 - V ,  H .V and 2 '-7, where V is a dense vector defined iteratively during execution of CG. We next 

describe how the three matrix-vector products in CG were coded for maximum efficiency on the 

CRAY x-MPl24. 

V 

Structure o f  f 

P ' I  ! . ) 
Data structure represenation o f  Z 

Figure 7 : Vectorization of the Product 2 . V  

4.1.1. Vectorization of Z.7 

The matrix 2 is partitioned into three parts: an identity matrix I for the superbasic variables, 

a null matrix 0 for nonbasic variables and a sparse matrix (-B-'.S) for basic variables. The pro- 

ducts of 3 with I and 0 are computed in the obvious way. The product of (-B-'.S).V deserves spe- 

cial attention. For convenience we refer to Z as being the matrix (-B-'.S). 

We store 2 columnwise, as a sparse matrix in vector PV( . ) .  We use a BEGIN(.) pointer array 

to indicate the starting address of every column in PV(. ) .  A NUM(.) array indicates the number of 
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non-zero entries in the column, and a pointer IROW(.) indicates the corresponding row number of 

every non-zero element - See Figure 7. 

The obvious way to compute y = Z-V on a scalar computer is the following: 

Step X DO for all I = 1, NA 
Y (I)= 0.0 

ENDDO 

Step Y DO for all J = 1, NS 
JBEG = BEGIN (J) 
JEND = JBEG + NUM (J) - 1 
VJ =v(J )  
DO for all K = JBEG, JEND 

ENDDO 
Y (IROW (K)) = Y (IROW (K)) + VJ * PV (K) 

ENDDO 
On a vector machine some modifications are necessary - though for this example the operations 

performed do not change. The first DO loop (Step X) is unrolled to a depth of four, and efficient 

vector instructions are generated by the compiler: 

Step XV DO for all I = 1, NA, 4 
Y (I )=O.O 
Y (I+l)= 0.0 
Y (I+2)= 0.0 
Y (I+3)= 0.0 

ENDDO 
The inner DO loop of Step Y is a sparse SAXPY operation30. It is treated in the following 

fashion: 

Step YV DO for all J = 1, NS 
JBEG = BEGIN (J) 

VJ =v(J )  
DO for all K = JBEG, JEND 

ENDDO 
SCATTER Y’(IR0W (K)) 3 Y” 
DO for all I = 1, NA 

ENDDO 

JEND = JBEG + NUM (J) - 1 

Y’ (K)= VJ * PV (K) 

Y (I)=Y(I)+Y’(I) 

ENDDO 
The SAXPY operation is a part of BCS/VectorPack library, coded in CRAY assembly language 

(CAL) for maximum efficiency, so the vectorized code is actually written as: 
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Step YV DO for all J = 1, NS 
JBEG = BEGIN (J) 
NUME = NUM (J) 
VJ =v(J)  
call SAXPY (Y, IROW(JBEG), VJ, PV(JBEG), NUME) 
ENDDO 

ENDDO 
The improvement in the efficiency of NLPNETG following these modifications is depicted by 

Point B of Figure 6. 

4.1.2. Vectorization of H.7 

The Hessian matrix H is symmetric, and is stored using a modification of the Yale sparse 

matrix storage scheme. The nonzero entries of the matrix are stored row-wise in vector H ( . ) .  A 

pointer array I H ( . )  points to the starting address of every row in H ( . ) ,  and pointer J H ( . )  indicates 

the corresponding column of all nonzero elements. Diagonal elements are stored even if the 

numerical value is zero. The obvious way to compute = H.F on a scalar machine is the follow- 

ing: 

Step X DO for all I = 1, NA 
Y (I) = 0.0 

ENDDO 

Step Y DO for all I = 1, NA 
SUM = 0.0 
IBEG = IH (I) 
IEND = IH (I+1) - 1 
DO for all J = IBEG, IEND 

POINT = JH (J) 
SUM = SUM + v(POINT) * H(J) 
Y(P0INT) = Y(PO1NT) + v(I) * H(J) 

ENDDO 
Y(I) = Y(I) + SUM 

ENDDO 

Although Step X will vectorize efficiently on the CRAY, the indirect addressing of the 

inner DO loop in Step Y inhibits vectorization. The vectorization of H-F requires the execution 

of operations in different order than in a scalar code, in order to make use of the BCS/VectorPack 

routine SAXPY and SDOT - inner product of a sparse vector with a dense vector : 
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Step WV GATHER Y’ t H(IH) 

Step XV DO for all I = 1, NA, 4 
Y (I) = Y‘ (I) * v(1) 
Y (I+l) = Y’ (I+l) * v(I+l) 
Y (I+2) = Y’ (I+2) * v(I+2) 
Y (I+3) = Y’ (I+3) * v(I+3) 

ENDDO 

Step YV DO for all I = 1, NA such that (IH(I+l)-IH(I)-1) not equal 0 
NUM = IH(I+l)-IH(I)-1 
IPOINT = IHO + 1 
Y 0 = Y(I) + SDOT ( H(IPOINT), IH(IPOINT), NUM, V) 
call SAXPY (Y, JH(IPOINT), v(I), NUM) 

ENDDO 

The improved performance of NLPNETG following these modifications of H T  is depicted by 

POINT D in Figure 6. A few irregularities - as seen by a Fortran programmer on a sequential 

machine - require some explanation : 

In Step WV the diagonal components of H are GATHERed in a temporary array y *, so as to 

initialize the vector to the values of diag ( H T )  in an efficient way. 

- Off-diagonal components of H , for those rows where such elements do exist, contribute to 

the product H T  twice: once due to their presence in the upper triangular matrix, and once 

due to the presence of a symmetric element below the diagonal. This contribution is com- 

puted twice: once in the SAXPY statement and once in the SDOT statement. While the 

number of operations performed by this code is optimum, the calculations are per- 

formed in an efficient vector/pipeline mode. 

The DO loop in Step YV is defined over values for which off diagonal elements are present, 

thus avoiding the overhead for calling the Vectorpack routines with zero components. On a 

scalar machine no significant difference is detected between executing a loop zero times, or 

having an IF/GOTO statement skip the loop altogether. POINT C (as opposed to POINT D) 

of Figure 6 indicates the degredation in performance that may occur by following the same 

programming practice on the CRAY. 

In implementing the above changes of NLPNETG care was taken to avoid memory bank 
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conflicts, merely by dimensioning the arrays by non-multiples of 32. Solving a sample problem 

(GROUPlad), with intentional bank conflicts gives the following results: 

Without bank conflicts: solution time 87.5 sec 

With bank conflicts : solution time 102.8 sec 

We observe a substantial degredation in performance as a result of inadequate knowledge of the 

computer characteristics. 

4.2. Simplicial Decomposition Algorithm 

The second candidate for vectorization was code GNSD, based on the simplicial decompo- 

sition a lg0r i thrn~~9~~.  This code challenges the vector machine architecture in two domains: 

(I) Performing operations on sparse vector/matrices that are stored in space economizing form. 

(11) Performing matrix operations on graph data structures. 

While sparse vector operations can be handled using a GATHEWSCATTER approach, much in 

the same way as with NLPNETG, only marginal improvement was achieved. This behavior was 

anticipated since almost 90% of the time in GNSD is spent solving the linear generalized network 

subproblem, with operations performed on graph data structure. This part of the algorithm is 

inherently scalar, and in the absence of alternative algorithms or data structures we concentrate 

on vectorizing the master problem. This involves the repeated solution of the Newton equations: 

(D "H .D ).p = -D "VF (D *W) 

where : 

Y = (j71,72,...,jin) is the matrix whose columns are the extreme points (vertices) 

W = (wI,w2,  ..., w,,) are associated weights for the vertices 

D = ~l-r,,...,~,-l-~,, is the derived linear basis representing the active simplex 

Note that D is not computed explicitly, but instead the upper triangular of the symmetric matrix 

C = D '*H *D is computed in the form: 

C = Y '*H .Y - Y 'OH .Y, - Y, '*H*Y + Y, '*H *Y, 
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where Y,, is a conformable matrix, with its columns equal to r7, . These products were stream- 

lined for the CRAY X-h4P using the same techniques employed in the vectorization of 

NLPNETG. 

Our local software efforts had only marginal improvement (2%) on the compiler vectorized 

code, which in turn was only marginally faster than the scalar performance (5%) -- see the first 

three columns of Table 3. Repeated applications of Steps 1-8 of our vectorization framework, 

indicated that some global aspects of the implementation had to be reconsidered. In particular, it 

became evident that the data structure for storing the vertices was inhibiting efficient vectoriza- 

tion of the master problem. 

Sparse storage d a t a  s t r u c t u r e  
o f  a c t i v e  v e r t i c e s  f o r  
s c a l a r  process ing .  

Dense storage d a t a  s t r u c t u r e  
o f  a c t i v e  v e r t i c e s  for 
vector  processing.  

WKt"" 
POINT I .  

w ( . I  

B (. ; .  1 

Figure 9: Active Vertices Storage for Simplicial Decomposition 

The vertices of the active simplex are represented by NA-long vectors, stored in matrix Y. 

To avoid rearranging the matrix every time a new vertex was added or an active vertex dropped, 
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we implemented a pointer scheme, indicating the active vertices in Y and their corresponding 

weights - see Figure 9. This pointer was used in indirect addressing during computation of C, and 

an alternative (also simpler) scheme was used, where the active venices were ordered in the first 

n columns of Y, and the weights were stored in the same order. This strategy removed the prob- 

lem of indirect addressing, but additional work is needed to keep the columns of Y in the right 

order, every time a vertex is dropped. The results of this change in data structure on the CRAY 

and a VAX 11/750 are shown in Figure 10. 

VAX 11/750 
- 

- 

A - & 

P T N 3 0  P T N  150 P T N 6 6 0  GRP 1AC G R P  1AD STICK4 
- 

- 

- 

- 
CRAY X-MP 

- 

I 1 I I I I I 

Figure 10: Performance of Vectorized GNSD on a CRAY X-MP/24 and a VAX 11/750 

On the CRAY the data rearrangement is executed in vector mode, and the presence of multiple 

paths to/from memory makes this operation very efficient. Little overhead is introduced in rear- 

ranging Y. The resulting code has improved efficiency; as much as 25% for some problems with 

average improvement 13%. On the sequential machine (VAX), however, little is gained by 

removing one level of addressing from the master problem procedures. The overhead of rearrang- 

ing Y is high; the vectorized code is less efficient - as much as 20%. 

Further vectorization of GNSD, with the modified data structure resulted in the improved 
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1' 

performance as summarized by the results of Table 3 (column 4). For some of the larger test 

problems as much as 99% of the total execution time is spent in the subproblem; no further 

improvement is possible in this environment since the cumnt implementation of the primal sim- 

plex algorithm for generalized networks is inherently scalar. Using an alternative linear program- 

ming algorithm (e.g. Karmarkap ) might improve the related performance of the SD method. 

An obvious change to GNSD would involve restructuring internal tactics, so that more emphasis 

is placed on the master problem. However extensive computational testing with GNSD elsewhere 

( see Mulvey et al. 34 ) does not provide any evidence that we could reduce the number of sub- 

problems by solving the master problems to higher accuracy. It seems that substantial savings in 

vectorizing GNSD can be achieved only with some radical modifications of the underlying algo- 

Vectorization . vectdrization 
FJTN~O 0.206 0.191 

rithm. 

PTN15O 
F''I"660 
STICK4 
GROUP 1 ac 

I1 I GNSD Solution times (sed I 

1.289 1.173 
9.046 8.553 

3.825 3.357 
27.080 * 

1 1  Problem I Without I Compiler 

GROUP 1 ad 8.1 15 * 
-Av. ratio 1 .oo 0.95 

1 ,  

Local Software 
Vectorization 

0.186 
1.146 
8.422 

25.100 
3.218 
8.007 
0.93 

Table 3 : Vectorization of GNSD on the CRAY X-MPi24 

Global Software 
Vectorization 

0.999 
7.725 

23.623 
2.884 
7.728 
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5. Discussion and Conclusions 

Two conclusions are immediate from the work described in this paper: 

The increased complexity of computer systems adds to the user the burden of specializing 

his algorithms. It is insufficient to concentrate research efforts solely on designing algo- 

rithms that capitalize on the problem’s intrinsic characteristics. We now must concern our- 

selves with the underlying computer architecture. 

Different algorithms exhibit various degrees of parallelism. The developed vectorization 

framework, when applied in the context of a truncated Newton algorithm, resulted in sub- 

stantial improvement in performance - as much as 80%. The same framework, when applied 

on a simplicial decomposition algorithm, resulted in very modest improvement in efficiency 

- at most 15%. Not only must we concern ourselves about which algorithm is suitable for 

some class of problems, but also which algorithm is more appropriate for a given computer 

architecture. 

In an effort to extend our previous work in comparing the network specialized algorithms 

with a general purpose code, we solved three characteristic problems with NLPNETG and 

MINOS36 both on the CRAY and a VAX 11/750. The relative performance of the two algorithms 

- as shown in Figure 11 - indicates that network algorithms vectorize at least as well as general 

purpose codes. It seems unlikely therefore that specialized NLGN algorithms will become 

obsolete, given their high performance ratio to general purpose codes, even on vector computers. 

Finally, an attempt was made to establish the size of the problems that can be solved on dif- 

ferent computer systems. Table 5 summarizes the results of our testing on three diverse machines: 

(1) VAX 11/750 minicomputer, (2) IBM 3081 large mainframe and (3) the CRAY X-hW24. We 

point out two facts that are obvious from this exercise: 

(1) Ultra-large NLGN can be solved on a routine basis on vector supercomputers, when 

sufficient care is taken to streamline the algorithms for the machine architecture. 

(2) The average ratio of 17 between the performance of NLPNETG on the IBM 3081 and the 
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Figure 11: Performace ratio of MINOS / NLPNETG on CRAY X-MP and VAX 11/750 

CRAY, can serve as the basis for a rudimentary comparison of nonlinear network optimiza- 

tion with other ares of large scale computations : Dongana13 reports an average ratio 13-22, 

for the solution of large systems of linear, dense equations and S ~ h n e d e l ~ ~  reports a ratio of 

13 for seven benchmark programs for the solutions of partial differential equations. Net- 

work algorithms are obviously on the frontier of vectorizable codes. 

Parallel computing opens several new areis of research for network programmers. We 

expect to see novel large scale applications of nonlinear network modeling. A new research topic 

is the development of specialized vector techniques for handling graph data structure, thus 

improving the performance of linear network algorithms, and with an impact on other areas of 

sparse matrix computations. Exploitation of the multiple processors available on the CRAY X- 



Problem 

P'I"150 

NLPNETG Solution times (se 
IBM3081 I VAX 11/750 (Unix) 

1.98 23.86 
297.93 
21.50 

9100.00 
1652.00 

10227.00 
204.43 

FTN660 
SMBANK 
BIGBANK 
GROUPlac 
GROUPlad 
MARK3 
Average 

~- . - 
3075.25 (1  84) 

22.85 
2.64 

376.74 
218.46 

1320.82 
24.87 

281.19 (17) 

I 
CRAY/XMP 

0.165 
1.402 
0.177 

58.896 
4.983 

49.454 
2.131 

16.744 (1)  

Table 5 : Testing NLPNETG on different computer systems 

MW24 is another area where further work is needed. The commercial availability of massively 

distributed systems presents another dimension to the problem of parallel algorithmic develop- 

ment. 
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